

Ventilation

4. Natural ventilation

Bachelor / Master degree course

Vladimír Zmrhal 3/2022

Principle of ventilation

Natural ventilation

- ➤ is driven by pressure differences across the building envelope, caused by wind and air density differences because of temperature differences between indoor and outdoor air
- ➤ the flow of air through open windows, doors, grilles and other planned building envelope penetrations

Mechanical (forced) ventilation

- intentional movement of air into and out of building using mechanical force
- ➤ is driven by fans

Hybrid ventilation

The air flow is driven by pressure differences across the building envelope.

Pressure difference is caused by:

- ➤ air density differences (temperature differences between indoor and outdoor air)
- > wind pressure

3

Natural ventilation

- > natural ventilation by large openings (permanent)
- > shaft ventilation (permanent)

heat source

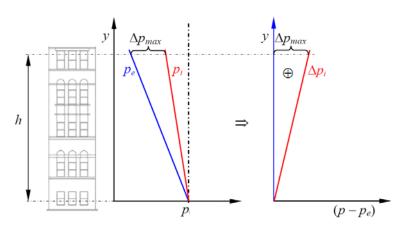
- > interupted natural ventilation (time limited)
- ➤ infiltration (time limited)

depends on outdoor climatic conditions

Balanced natural ventilation

- ➤ for ventilation in industry with permanent heat gain natural ventilation by large openings
- ➤ infiltration and interrupted ventilation residential application etc.

Natural local exhaust


> shaft ventilation – industry

5

Natural ventilation

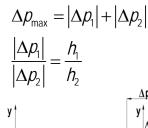
Stack pressure - hydrostatic pressure caused by the mass of a column air located inside or outside a building

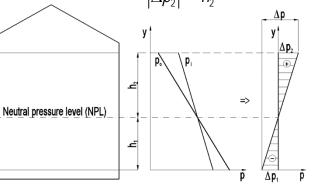
Stack pressure difference

$$\rho_o = \rho - \rho_o gy$$
$$\rho_i = \rho - \rho_i gy$$

$$\Delta p = p_i - p_o = p - \rho_i gy - (p - \rho_o gy) = gy(\rho_o - \rho_i)$$

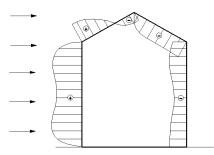
$$\Delta p_{\text{max}} = g \int_0^h (\rho_o - \rho_i) dy$$


$$\Delta \rho_{\text{max}} = gh(\rho_o - \rho_i)$$


7

Natural ventilation

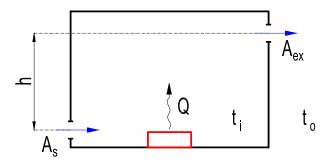
Neutral pressure level



Wind pressure

$$\rho_{\scriptscriptstyle W} = C_{\scriptscriptstyle p} \frac{{\scriptscriptstyle W}^2}{2} \rho$$

where C_p is wind surface pressure coefficient (empirical); it depends on wind direction, orientation of the building surface, ... C_p = -1.4 to 1.4


9

Natural ventilation by large openings

Technical rooms

(boiler room, current transformer room, junction exchange station, ...)

 \rightarrow Goal = design of openings area $A_{\rm ex}$, $A_{\rm s}$

Natural ventilation by large openings

Mass air flow

$$\dot{M} = \frac{\dot{Q}}{C(t_{ex} - t_s)}$$

$$t_s = t_o$$
$$t_{ex} = t_i$$

Openings area

$$M_{ex} = M_s = M$$

$$\mu_{ex}A_{ex}\rho_{ex}W_{ex} = \mu_{s}A_{s}\rho_{s}W_{s} \longleftrightarrow W_{s} = \sqrt{\frac{2\Delta\rho_{s}}{\rho_{s}}}$$

$$\frac{\Delta p_s}{\Delta p_{ex}} = \frac{\mu_{ex}^2}{\mu_s^2} \frac{\rho_{ex}}{\rho_s} \frac{A_{ex}^2}{A_s^2}$$

11

Natural ventilation by large openings

Discharge coefficient for opening μ

$$\mu = \alpha \varphi$$

where
$$\varphi$$

...velocity coefficient [-]

$$\alpha$$

...coefficient of contraction [-]

$$\varphi = \frac{W}{W_I}$$

real and theoretical velocity ratio

$$\alpha = \frac{A'}{A}$$

real and theoretical area ratio

$$\mu = \frac{wA'}{w_t A} = \frac{V}{V_t}$$

real and theoretical volume flow ratio

Natural ventilation by large openings

Discharge coefficient for opening μ

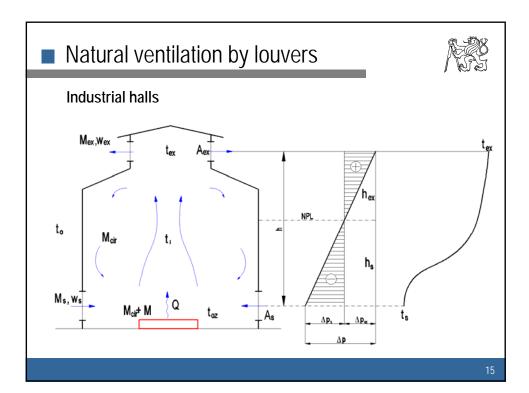
Opening	H/B	Shutter angle α				
		15°	30°	45°	60°	90°
Supply air with louver	1	0,15	0,3	0,44	0,56	0,64
	0,5	0,13	0,27	0,39	0,56	0,61
Single baffle center- hinged	1	0,15	0,3	0,44	0,56	0,64
	0,1	0,13	0,27	0,39	0,56	0,61

13

Natural ventilation by large openings

Pressure difference (stack effect)

$$\Delta p = hg(\rho_o - \rho_i)$$


$$\rho = 1,293 \frac{p}{101325} \frac{273}{273 + t}$$

for pressure differences $\Delta p_{\mbox{\tiny S'}} \, \Delta p_{\mbox{\tiny ex}} \, {\rm can}$ be written

$$\Delta \rho = \Delta \rho_{s} + \Delta \rho_{ex}$$

Openings area [m²]

$$A_{s} = \frac{M_{s}}{\mu_{s}\sqrt{2\Delta\rho_{s}\rho_{s}}} \qquad A_{ex} = \frac{1}{\mu_{ex}\sqrt{2\Delta\rho_{s}\rho_{s}}}$$

Pressure difference (stack effect)

$$\Delta p = hg(\rho_o - \rho_i) \qquad t_i = \frac{t_{oz} + t_{ex}}{2}$$

Vertical air temperature changes \rightarrow coefficient of heat removal efficiency B[-]

$$B = \frac{M_{rec}}{M + M_{rec}}$$

Heat balance

$$M_{rec}ct_{ex} + Mct_o = (M + M_{rec})ct_{oz}$$

$$B = \frac{t_{oz} - t_o}{t_{ex} - t_o} < 1$$

$$B = 0.25 \text{ to } 0.4$$

> Summer: $t_{oz} - t_o \le 5 \text{ K}$; $t_o = 25 \text{ °C}$ > Winter: $t_{oz,min} = 10 \text{ °C}$; $t_o = 0 \text{ °C}$

in Czech Rep.

Natural ventilation by louvers

Heat coefficient B

Industry applicatio	n	В	
Steel mill	basic furnace	0,30 - 0,35	
	electric furnace	0,35 - 0,40	
	cast hall	0,25 - 0,30	
Rolling mill	furnace	0,25 - 0,30	
	rolling section	0,25 - 0,45	
Foundry	melting-house, cupola	0,40 - 0,45	
	cast into ingots	0,37 - 0,40	
	cooling section	0,65 - 0,70	
Glass factory	tank furnace	0,26 - 0,30	
	pot furnace	0,26 - 0,28	

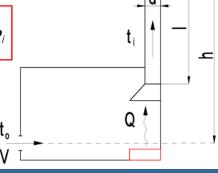
Louvers area calculation

> see page 11 to 14

Location of the openings in summer (by the floor) and winter (smaller openings and higher location - up to 4 m).

Shaft ventilation

> pressure difference due to stack effect


$$\Delta p = hg(\rho_o - \rho_i)$$

> pressure loss (friction and local losses)

$$\Delta \rho_{loss} = \left(\lambda \frac{1}{d} + \sum \zeta + 1\right) \frac{w^2}{2} \rho_i$$

 $\Delta \rho \geq \Delta \rho_{loss}$

$$\dot{V} = \frac{\dot{Q}}{\rho c (t_i - t_o)}$$

Shaft ventilation

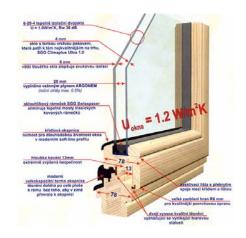
 \succ assumption: the pressure in the shaft is approximately equal to atmospheric pressure

$$p_i = p_o$$

> effect of the area of the supply opening

21

Infiltration



- uncontrolled natural ventilation through the cracks, gaps around closed windows and doors, mortar joints
- ➤ air leakage through the building envelope
- ➤ possitive effect of infiltration → ventilation
- ➤ negative effect of infiltration → heat losses in winter
- ➤ present → tight windows

Infiltration

າາ

Infiltration

Airflow through the gaps

$$V_o = \sum (i \cdot l) \Delta \rho^n$$

where Δp ...pressure difference across the leakage path [Pa]

 $i \dots$ flow coefficient [m³/(s.m.Pa^{0,67})]

/... lenght of the gaps [m]

 $n \dots$ flow exponent n = 0.67

Ventilation heat loss

$$Q_{vent} = V_o \rho c (t_i - t_o)$$

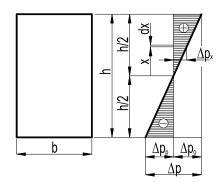
Infiltration

Example:

Room 10 m², height 2,6 m, window 1,2 x 1,5 m, t_0 = -12 °C, t_i = 20 °C

	<i>i</i> [m³/(m.s.Pa ^{0,67})]	/[h ⁻¹]	Q _{vent} [W]
Old windows	0,00019	0,80	240
Requirements	0,00001 to 0,000087	0,02 to 0,36	6 to 109
Common windows	0,000025	0,10	31
Top windows	0,000004	0,02	5

25


Interupted natural ventilation

- > casual opening of the window
- ➤ lower and higher parts of the window
- > mass balance

$$\dot{M}_o = \dot{M}_{ex} = \dot{M}$$

$$\dot{M}_o = \mu \rho_e W_o S_o$$

$$d\dot{M} = \mu \rho_o \sqrt{\frac{2\Delta \rho_x}{\rho_o}} b dx = \mu \sqrt{2gx(\rho_o - \rho_i)\rho_e} b dx$$

Interupted natural ventilation

$$M = \mu b \sqrt{2g(\rho_o - \rho_i)\rho_o} \int_0^{h/2} x^{1/2} dx = \mu b \sqrt{2g(\rho_o - \rho_i)\rho_o} \frac{2}{3} \left(\frac{h}{2}\right)^{3/2}$$
$$= \mu \frac{2}{3} b \sqrt{2g(\rho_o - \rho_i)\rho_o} \left(\frac{h^3}{8}\right) \dots$$

$$M = \mu \frac{1}{3} b \sqrt{g(\rho_o - \rho_i) \rho_o h^3}$$

27

Natural ventilation of technical room

Example 1: Junction exchange station Calculate $A_s = ?$ and $A_{ex} = ?$

Internal heat gains Q = 5 kW

Outdoor air temperature $t_o = 30 \, ^{\circ}\text{C}$ (in summer) Max. indoor air temperature $t_i = 35 \, ^{\circ}\text{C}$ (in summer)

Atmospheric pressure p = 100 kPa

$$h = 3 \text{ m}$$

 $\mu_s = \mu_{ex} = 0.65$
 $A_{ex} = A_s$
 $\rho = 1.293 \frac{p}{101325} \frac{273}{273 + t}$

Example 2: Calculate $A_s = ?$ and $A_{ex} = ?$

Internal heat gains Q = 150 kW

Outdoor air temperature $t_o = 25 \, ^{\circ}\text{C}$ (summer)

Temp. in occupied zone ... see lecture Atmospheric pressure p = 100 kPa

h = 12 m

B = 0.35

 $\mu_{s} = 0.75$; $\mu_{ex} = 0.65$

 $A_{ex}/A_{s} = 1/2$

$$\rho = 1.293 \frac{p}{101325} \frac{273}{273 + t}$$

29

Thank you for your attention

