Environmental Engineering

Heating Systems

Roman Vavřička (room no. 817)
Roman.Vavricka@fs.cvut.cz

Heating Systems - Typical Elements - Drawing

Horizontal Heating Systems

Horizontal vs. Vertical Heating Systems

Horizontal vs. Vertical Heating Systems

Heating Systems - Pipe materials - Thermal Expansion

$$
\Delta l=I_{0} \cdot \alpha \cdot \Delta t
$$

$\Delta l \quad$ - change pipe length [mm]
$I_{0} \quad$ - pipe length $[\mathrm{m}]$
a - coefficient of thermal particle expansion [$\mathrm{mm} / \mathrm{m} \cdot \mathrm{K}$]
$\Delta t \quad$ - temperature difference $[\mathrm{K}]$

Heating Systems - Pipe materials - Thermal Expansion

Example 1:
 $\Delta l=I_{0} \cdot \alpha \cdot \Delta t$

Pipe length is 10 m for pipe DN 15 , when heated by 50 K .

Pipe Material	Coefficient of thermal particle expansion $\alpha[\mathrm{mm} / \mathrm{m} \cdot \mathrm{K}]$	Change pipe length $\Delta \boldsymbol{I}$ [mm]
Steel	0,012	
Copper	0,017	
Aluminium	0,0238	
Plastic (PVC)	0,026	
Plastic (PEX)	0,08	

Heating Systems - Pressure Equations

Heating Systems - Pressure Equations

Heating Systems - Pressure Equations

Heating Systems - Pressure Equations

Example 2:

$\Delta p_{\text {Valve }}=\left(\frac{\dot{V}}{k_{v}}\right)^{2} \cdot \frac{\rho}{10}$
$\Delta p_{\text {Valve Position } 1}=\ldots$
$\Delta p_{\text {Valve Position } 8}=\ldots$

Heating Systems - Pressure Equations

Heating Systems - Pressure Equations

Total Pressure Loss

$$
\begin{aligned}
& \Delta p_{\text {Total }}=\Delta p_{\text {Fricion }}+\Delta p_{\text {Local }}=\lambda \cdot \frac{L}{d} \cdot \frac{w^{2}}{2} \cdot \rho+\sum \xi \cdot \frac{w^{2}}{2} \cdot \rho=\left(\lambda \cdot \frac{L}{d}+\sum \xi\right) \cdot \frac{w^{2}}{2} \cdot \rho \\
& \lambda \quad \text { - friction coefficient [-] } \\
& \text { d - inner pipe diameter [m] } \\
& L \quad \text { - pipe length [m] } \\
& \text { w - velocity [m/s] } \\
& \rho \quad \text { - density }\left[\mathrm{kg} / \mathrm{m}^{3}\right] \\
& \xi \quad \text { - local loss coefficient [-] }
\end{aligned}
$$

Heating Systems - Pressure Equations

Example 3:

Total pipe length	$5[\mathrm{~m}]$
Elbow local loss coefficient	$2,0[-]$
Inner diameter	$15[\mathrm{~mm}]$
Water flow	$0,4\left[\mathrm{~m}^{3} / \mathrm{h}\right]$

Heating Systems - Pressure Equations

Example 3:

$$
\dot{V}=\frac{\pi \cdot d^{2}}{4} \cdot w \Rightarrow w=\frac{4 \cdot \dot{V}}{\pi \cdot d^{2}}=\ldots
$$

$\operatorname{Re}=\frac{w \cdot d}{v}=\ldots$
$v \quad$ - kinematic viscosity $\quad\left[\mathrm{m}^{2} / \mathrm{s}\right]\left(\right.$ for $50^{\circ} \mathrm{C}$ is $0,553 \cdot 10^{-6}$)

Heating Systems - Pressure Equations

Heating Systems - Pressure Equations

Example 3:

$$
\begin{aligned}
& \Delta p_{\text {Toalal }}=\Delta p_{\text {Firition }}+\Delta p_{\text {Looal }}=\lambda \cdot \frac{L}{d} \cdot \frac{w^{2}}{2} \cdot \rho+\sum \xi \cdot \frac{w^{2}}{2} \cdot \rho=\left(\lambda \cdot \frac{L}{d}+\sum \xi\right) \cdot \frac{w^{2}}{2} \cdot \rho \\
& \Delta p_{\text {Total }}=\left(\cdots \cdot \frac{5}{0,015}+\sum 2 \cdot 2,0\right) \cdot \frac{\cdots^{2}}{2} \cdot 1000=\ldots
\end{aligned}
$$

Heating Systems - Pipe Design

Two-pipe systems with pump (forced) is optimal velocity of $0,6 \mathrm{~m} / \mathrm{s}$.

Heating Systems - Pipe Design

$$
\Delta p_{\text {Dispositional }}=\Delta p_{\text {Pump }}
$$

One-pipe systems with pump (forced) is optimal velocity of $1,0 \mathrm{~m} / \mathrm{s}$.

Heating Systems - Pipe Design

Gravity heating systems

The boiler is located at the lowest point in the system. The warm water has a lower density (it is lighter) than the cooled return water. Therefore, water in the system automatically starts circulate due to buoyant pressure. There is no need for a pump. As there is only a small differential pressure, wide-diameter pipes are required.

Heating Systems - Pipe Design

Mass flow rate is determined from basic calorimetric equation (output for chosen radiator)

 real heat output of the radiator [W] specific thermal capacity [4187 J/kg-K] flow water temperature (inlet) $\left[{ }^{\circ} \mathrm{C}\right]$ return water temperature (outlet) $\left[{ }^{\circ} \mathrm{C}\right]$

$$
\dot{Q}=\dot{m} \cdot c \cdot\left(t_{w 1}-t_{w 2}\right) \Rightarrow \dot{m}=\frac{\dot{Q}}{c \cdot\left(t_{w 1}-t_{w 2}\right)}
$$

Heating Systems - Pipe Design

Internal (optimal) diameters are designed according to the selected optimal (i.e. economic) velocity:
$\dot{m}=\dot{V} \cdot \rho=S \cdot w_{o p t} \cdot \rho=\frac{\pi \cdot d_{o p t}{ }^{2}}{4} \cdot w_{o p t} \cdot \rho \Rightarrow d_{\text {opt }}=\sqrt{\frac{4 \cdot \dot{m}}{\pi \cdot \rho \cdot w_{\text {opt }}}}$
After calculation diameter you have to select the nearest nominal diameter from real production line and subsequently you have to calculate real velocity! (and real pressure drop of course)

$$
d_{\text {opt }}=d_{\text {real }} \quad w_{\text {real }}=\frac{4 \cdot \dot{m}}{\pi \cdot \rho \cdot d_{\text {real }}{ }^{2}}
$$

Heating Systems - Pipe Design

Heating Systems - Pipe Design

Example 4:

$60 / 50^{\circ} \mathrm{C}$
OT $1=690 \mathrm{~W}$
OT $2=2800 \mathrm{~W}$
OT $3=1600 \mathrm{~W}$
Determine mass flow rate for each radiator (in kg/h)

Heating Systems - Pipe Design

Example 4:

Section	$\mathrm{m}[\mathrm{kg} / \mathrm{s}]$	$\mathrm{m}[\mathrm{kg} / \mathrm{h}]$
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

Heating Systems - Pipe Design

Heating Systems - Pressure Loss

Example 4:

$$
\begin{aligned}
& \Delta p_{\text {Toala }}=\Delta p_{\text {Frition }}+\Delta p_{\text {Local }}=\lambda \cdot \frac{L}{d} \cdot \frac{w^{2}}{2} \cdot \rho+\sum \xi \cdot \frac{w^{2}}{2} \cdot \rho=\left(\lambda \cdot \frac{L}{d}+\sum \xi\right) \cdot \frac{w^{2}}{2} \cdot \rho \\
& \Delta p_{\text {Total }}=\Delta p_{\text {Frition }}+\Delta p_{\text {Local }}=R \cdot L+Z
\end{aligned}
$$

$$
\begin{equation*}
R=\lambda \cdot \frac{w^{2}}{2 \cdot d} \cdot \rho[P a / m] \quad Z=\sum \xi \cdot \frac{w^{2}}{2} \cdot \rho \tag{Pa}
\end{equation*}
$$

Heating Systems - Pressure Loss

Example 4:			$R=\lambda \cdot \frac{w^{2}}{2 \cdot d} \cdot \rho \quad[\mathrm{~Pa} / \mathrm{m}]$									
$\begin{gathered} \mathrm{Cu} \\ \text { pipes } \end{gathered}$	$\begin{array}{r} 8 x \\ \left(d_{i}=6\right. \end{array}$	$\begin{aligned} & \hline 1 \\ & \mathrm{~mm}) \\ & \hline \end{aligned}$	$\begin{array}{r} 10 \\ \left(d_{i}=\right. \end{array}$	$\begin{aligned} & \hline \times 1 \\ & \mathrm{~mm}) \end{aligned}$	$\begin{array}{r} 12 \\ \left(d_{i}=1\right. \end{array}$		$\begin{array}{r} 15 \\ \left(d_{i}=1\right. \end{array}$		$\begin{array}{r} 18 \\ \left(d_{i}=1\right. \end{array}$	$\begin{aligned} & \hline \times 1 \\ & 6 \mathrm{~mm}) \end{aligned}$	$\begin{gathered} 22 \times 1 \\ \left(d_{i}=20 \mathrm{~mm}\right) \\ \hline \end{gathered}$	
$\begin{gathered} M \\ {[\mathrm{~kg} / \mathrm{h}]} \end{gathered}$	$\begin{gathered} R \\ {[\mathrm{~Pa} / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} w \\ {[\mathrm{~m} / \mathrm{s}]} \end{gathered}$	$\begin{array}{\|c} \hline R \\ {[\mathrm{~Pa} / \mathrm{m}]} \\ \hline \end{array}$	$\begin{gathered} w \\ {[\mathrm{~m} / \mathrm{s}]} \end{gathered}$	$\begin{gathered} R \\ {[\mathrm{~Pa} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} w \\ {[\mathrm{~m} / \mathrm{s}]} \end{gathered}$	$\begin{gathered} R \\ {[\mathrm{~Pa} / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} w \\ {[\mathrm{~m} / \mathrm{s}]} \end{gathered}$	$[\mathrm{Pa} / \mathrm{m}$	$[\mathrm{m} / \mathrm{s}]$	$\begin{gathered} R \\ {[\mathrm{~Pa} / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{w} \\ {[\mathrm{~m} / \mathrm{s}]} \end{gathered}$
50	805	0,50	155	0,28	43,5	0,18	13,0	0,11	5,70	0,07	2,35	0,04
71	1475	0,71	375	0,40	120	0,25	24,5	0,15	8,25	0,10	3,30	0,06
100			680	0,56	235	0,36	68,0	0,21	19,5	0,14	5,40	0,09
140			1225	0,80	420	0,50	120	0,30	45,0	0,19	14,5	0,12
200			2300	1,10	790	0,71	225	0,42	83,5	0,28	29,0	0,18
250					1170	0,90	330	0,53	125	0,34	42,5	0,22
320					1810	1,10	515	0,67	190	0,45	65,5	0,28
360					2235	1,30	630	0,75	235	0,50	80,5	0,32
400							760	0,85	280	0,56	97,0	0,36
450							940	0,95	345	0,63	120	0,40
500							1130	1,00	415	0,71	145	0,45

Heating Systems - Pressure Loss

Heating Systems - Pipe Design

Heating Systems - Pressure Loss

Example 4:

Next step is to set TRV (thermostatic valve) and RV (regulation valve) on each radiator in such way to achieve the same total pressure loss as in circuit OT 2 (i.e. increase pressure loss of circuits OT 1 and OT 3).

More in E161566 - Heating!

Heating Systems - Pressure Loss

Example 4:

Disadvantages:
High energy consumption
Overheated or under-cooled rooms
Flow noises at the valves

With hydronic balancing

Advantages:
Energy saving effect
Optimum room temperatures No flow noises
Good regulation behaviour of the system

Heating Systems - Pressure Loss

Example 4:

Heating Systems - Pressure Loss

Example 4:

Finally - in all parts of heating system is the same pressure loss 15331 Pa and $438 \mathrm{~kg} / \mathrm{h}$.

Heating Systems - Pump

The pump characteristic curve describes the delivery pump pressure (or head) (Δp or H) as a function of the delivery volume of water, i.e. $\Delta p=f(V)$ or $H=f(V)$.

Heating Systems - Pump

Pump characteristic:

The system characteristic
 curve expresses the total pressure loss Δp_{t} (or total head loss H_{t}) required by the system as a function of the water flow rate V.

System characteristic

Heating Systems - Pump

Pump characteristic:

The intersection point of the system characteristic and the characteristic curve of a pump is called operating point. The point of operation determines current operating pressure (head) and the operating volume flow rate in the system.

Operating point

Heating Systems - Pressure Loss

Example 4:

Finally - in all parts of heating system is the same pressure loss 15331 Pa and $438 \mathrm{~kg} / \mathrm{h}$.
https://product-selection.grundfos.com/

Heating Systems - Expansion Vessel

A. When system is filled, no water enters tank when cushion and water pressure are in equilibrium
B. As temperature increases, diaphragm moves to accept expanded water
C. When water rises to maximum, full acceptance of expansion is achieved

Heating Systems - Expansion Vessel

Heating Systems - Expansion Vessel

Example 5:

V_{0} is in our case 320 litres (the sum of water volume in pipes, heating radiators, boiler, etc.)
$n=f\left(\Delta t_{\text {max }}=t_{\text {max }}-t_{\text {min }}\right)$
$t_{\text {max }}$ is e.g. $60^{\circ} \mathrm{C}$ (according to maximum design temperature in our heating system)
$t_{\text {min }}$ is usually $10^{\circ} \mathrm{C}$ (supposed as minimum temperature of cold water in heating systems when filling system)

$$
V_{E V}=1,3 \cdot V_{0} \cdot n \cdot \frac{1}{\eta}
$$

$\Delta t_{\max }[\mathrm{K}]$	20	30	40	45	50	55	60	65	70
$\mathrm{n}[-]$	0,00401	0,00749	0,01169	0,01413	0,01672	0,01949	0,02243	0,02551	0,02863
$\Delta t_{\max }[\mathrm{K}]$	75	80	85	90	95	100	105	110	115
$n[-]$	0,03198	0,03553	0,03916	0,04313	0,04704	0,05112	0,05529	0,05991	0,06435

Heating Systems - Expansion Vessel

Example 5:

V_{0} is in our case 320 litres (the sum of water volume in pipes, heating radiators, boiler, etc.)
η is calculated according to following formula:

$$
V_{E V}=1,3 \cdot V_{0} \cdot n \cdot \frac{1}{n}
$$

$$
\eta=\frac{p_{h, d o v, A}-p_{d, d o v, A}}{p_{h, d o v, A}}
$$

Where pressures are the same as described previously, but they have to be expressed like absolute pressures by adding up barometric pressure $p_{B}=100 \mathrm{kPa}$ (e.g. $\mathrm{p}_{\mathrm{h}, \text { dov,A }}=\mathrm{p}_{\mathrm{h}, \mathrm{dov}}+100 \mathrm{kPa}$)!

Highest allowed pressure is equal to opening
pressure of safety valve an it is $p_{o t}=350 \mathrm{kPa}$.
$p_{d, \text { dov }, A}=1,1 \cdot \rho \cdot g \cdot h \cdot 10^{-3}+p_{B}$
Height h of our system is $4,5 \mathrm{~m}$, density of water is $1000 \mathrm{~kg} . \mathrm{m}^{-3}$

Heating Systems - Expansion Vessel

Example 5:

V_{0} is in our case 320 litres (the sum of water volume in pipes, heating radiators, boiler, etc.)
$\Delta t_{\text {max }}=60-10=50 \mathrm{~K}$
$n=0,01672$ (from the table)
$p_{h, d o v, A}=p_{o t, A}=350+100=450 \mathrm{kPa}$
$p_{d, d o v, A}=1,1 \cdot \rho \cdot g \cdot h \cdot 10^{-3}+p_{B}=1,1 \cdot 1000 \cdot 9,81 \cdot 4,5 \cdot 10^{-3}+100=\ldots$
$\eta=\frac{p_{h, \text { dov }, A}-p_{d, d o v, A}}{p_{h, d o v, A}}=\frac{450-\ldots}{450}=\ldots$
$V_{E V}=1,3 \cdot V_{0} \cdot n \cdot \frac{1}{\eta}=1,3 \cdot 320 \cdot \ldots \cdot \frac{1}{=}=\ldots \quad \begin{aligned} & \text { Then you have to select vessel with } \\ & \text { the closest higher volume from the }\end{aligned}$ available sizes of the production line ($2,4,6,10,15,30,60, \ldots$ litres)

