

Heating Systems – Pipe materials – Thermal Expansion											
Example 1: $\Delta l = l_0 \cdot \alpha \cdot \Delta t$ Pipe length is 10 m for pipe DN 15, when heated by 50 K.											
	Pipe Material	Coefficient of thermal particle expansion α [mm/m·K]	Change pipe length <i>∆I</i> [mm]								
	Steel	0,012									
	Copper	0,017									
	Aluminium	0,0238									
	Plastic (PVC)	0,026									
	Plastic (PEX)	0,08									
12/52											

6

14

Example 4: $R = \lambda \cdot \frac{w^2}{2 \cdot d} \cdot \rho$ [Pa / m]												
Cu	8)	(1)	10	x 1 12 x 1			15 x 1		18 x 1		22 x 1	
pipes	$(a_i = b_i)$	omm)	$(a_i = 8$	smm)	$(a_i = 1)$	<u>u mm)</u>	$(a_i = 1)$	3 mm)	$(a_i = 16 \text{ mm})$		$(d_i = 20 \text{ mm})$	
INI [ka/b]	IPa/m1	w [m/s]	IPa/m1	/// [m/s]	IPa/m1	[m/s]	IPa/m1	/// [m/s]	IPa/m	[m/s]	IPa/m1	w [m/e]
50	805	0.50	155	0.28	43.5	0.18	13.0	0 11	5 70	0.07	2.35	0.04
71	1475	0,00	375	0.40	120	0.25	24.5	0.15	8 25	0.10	3.30	0.06
100		0,11	680	0.56	235	0.36	68.0	0.21	19.5	0.14	5 40	0.09
140			1225	0.80	420	0.50	120	0.30	45.0	0.19	14.5	0.12
200			2300	1,10	790	0,71	225	0,42	83,5	0,28	29,0	0,18
250				,	1170	0,90	330	0,53	125	0,34	42,5	0,22
320					1810	1,10	515	0,67	190	0,45	65,5	0,28
360					2235	1,30	630	0,75	235	0,50	80,5	0,32
400							760	0,85	280	0,56	97,0	0,36
450							940	0,95	345	0,63	120	0,40
500							1130	1,00	415	0,71	145	0,45

Heating Systems – Pressure Loss												
<u>Exa</u>	mple 4:				RŠ 2	RŠ						
						Ø	8		3 OTR RŠ	OT 3 3		
Section	m [kg/h]	d _{opt} [mm]	d _{real} [mm]	w _{real} [mm]	L [m]	R [Pa/m]	ξ[-]	R·L [Pa]	Z [Pa]	R·L+Z [Pa]		
1					2		4,1					
2					5		2,5					
3					3		1,0					
4					3		2,5					
5					5		2,5					
6					2		0,6					
7					8		2,0					
8					8		2,0					
9					1		0					
10					1		0					
35/52												

Heating Systems – Expansion Vessel

Example 5:

Vo is in our case 320 litres (the sum of water volume in pipes, heating radiators, boiler, etc.)

 $n = f(\Delta t_{max} = t_{max} - t_{min})$ t_{max} is e.g. 60 °C (according to maximum design temperature in our heating system) t_{min} is usually 10 °C (supposed as minimum temperature of cold water in heating systems - when filling system)

$$V_{EV} = 1, 3 \cdot V_o \cdot n \cdot \frac{1}{n}$$

-										
	⊿t _{max} [K]	20	30	40	45	50	55	60	65	70
	n[-]	0,00401	0,00749	0,01169	0,01413	0,01672	0,01949	0,02243	0,02551	0,02863
Γ	⊿t _{max} [K]	75	80	85	90	95	100	105	110	115
	n[-]	0,03198	0,03553	0,03916	0,04313	0,04704	0,05112	0,05529	0,05991	0,06435
_					_					

Heating Systems – Expansion Vessel

Example 5:

49/52

Vo is in our case 320 litres (the sum of water volume in pipes, heating radiators, boiler, etc.)

$$V_{EV} = 1, 3 \cdot V_o \cdot n \cdot \frac{1}{\eta}$$

 η is calculated according to following formula:

$$\eta = \frac{p_{h,dov,A} - p_{d,dov,A}}{p_{h,dov,A}}$$

Where pressures are the same as described previously, but they have to be expressed like absolute pressures by adding up barometric pressure $p_B = 100 \, kPa$ (e.g. $p_{h,dov,A} = p_{h,dov} + 100 \, kPa$)!

Highest allowed pressure is equal to opening pressure of safety valve an it is p_{ot} = 350 kPa.

$$p_{d,dov,A} = 1,1 \cdot \rho \cdot g \cdot h \cdot 10^{-3} + p_B$$

Height h of our system is 4,5 m, density of water is 1000 kg.m⁻³

50/52

Heating Systems – Expansion Vessel

Example 5:

$$\begin{split} & \textbf{V}_{\textbf{o}} \text{ is in our case 320 litres (the sum of water volume in pipes, heating radiators, boiler, etc.)} \\ & \Delta t_{max} = 60 \cdot 10 = 50 \text{ K} \\ & n = 0.01672 \text{ (from the table)} \\ & p_{h,dov,A} = \rho_{ot,A} = 350 + 100 = 450 \text{ kPa} \\ & p_{d,dov,A} = 1.1 \cdot \rho \cdot g \cdot h \cdot 10^{-3} + \rho_B = 1.1 \cdot 1000 \cdot 9.81 \cdot 4.5 \cdot 10^{-3} + 100 = \dots \\ & \eta = \frac{\rho_{h,dov,A} - \rho_{d,dov,A}}{\rho_{h,dov,A}} = \frac{450 - \dots}{450} = \dots \\ & \textbf{V}_{EV} = 1.3 \cdot \textbf{V}_o \cdot n \cdot \frac{1}{\eta} = 1.3 \cdot 320 \cdot \dots \cdot \frac{1}{\dots} = \dots \\ & \text{Then you have to select vessel with the closest higher volume from the available sizes of the production line (2.4.6.10.15.30.60,\dots litres) \end{split}$$

