





















| Natural ventilat                          | ion by large openings                                      |    |
|-------------------------------------------|------------------------------------------------------------|----|
| Discharge coefficien $\mu = lpha \phi$    | t for opening $\mu$                                        |    |
| where $\varphi \\ \alpha$                 | velocity coefficient [-]<br>coefficient of contraction [-] |    |
| $\varphi = \frac{W}{W_t}$                 | real and theoretical velocity ratio                        |    |
| $\alpha = \frac{A'}{A}$                   | real and theoretical area ratio                            |    |
| $\mu = \frac{WA'}{W_t A} = \frac{V}{V_t}$ | real and theoretical volume flow ratio                     |    |
|                                           |                                                            | 12 |

| Natural ventilation by large openings |               |         | <b>Å</b> |           |      |      |
|---------------------------------------|---------------|---------|----------|-----------|------|------|
| Discharge coefficie                   | nt of opening | g $\mu$ |          |           |      |      |
| Opening                               | H/B           |         | Shi      | itter and | le a |      |
| opening                               |               | 15°     | 30°      | 45°       | 60°  | 90°  |
| Supply air with                       | 1             | 0,15    | 0,3      | 0,44      | 0,56 | 0,64 |
| louver                                | 0,5           | 0,13    | 0,27     | 0,39      | 0,56 | 0,61 |
| Single baffle center-                 | 1             | 0,15    | 0,3      | 0,44      | 0,56 | 0,64 |
|                                       |               |         |          | 0.00      | 0.5/ | 0.44 |











| Natural vent<br>Heat coefficient | Natural ventilation by louvers |             |    |
|----------------------------------|--------------------------------|-------------|----|
| Industry application             | n                              | В           |    |
| Steel mill                       | basic furnace                  | 0,30 - 0,35 |    |
|                                  | electric furnace               | 0,35 - 0,40 |    |
|                                  | cast hall                      | 0,25 - 0,30 |    |
| Rolling mill                     | furnace                        | 0,25 - 0,30 |    |
|                                  | rolling section                | 0,25 - 0,45 |    |
| Foundry                          | melting-house, cupola          | 0,40 - 0,45 |    |
|                                  | cast into ingots               | 0,37 - 0,40 |    |
|                                  | cooling section                | 0,65 - 0,70 |    |
| Glass factory                    | tank furnace                   | 0,26 - 0,30 |    |
|                                  | pot furnace                    | 0,26 - 0,28 |    |
|                                  |                                |             | 19 |















## Infiltration



## Example:

Room 10 m<sup>2</sup>, height 2,6 m, window 1,2 x 1,5 m,  $t_0 = -12 \degree C$ ,  $t_1 = 20 \degree C$ 

|                | <i>i</i> [m <sup>3</sup> /(m.s.Pa <sup>0,67</sup> )] | <b>/</b> [h⁻¹] | <i>O</i> <sub>vent</sub> [W] |
|----------------|------------------------------------------------------|----------------|------------------------------|
| Old windows    | 0,00019                                              | 0,80           | 240                          |
| Requirements   | 0,00001 to 0,000087                                  | 0,02 to 0,36   | 6 to 109                     |
| Common windows | 0,000025                                             | 0,10           | 31                           |
| Top windows    | 0,000004                                             | 0,02           | 5                            |





• Interupted natural ventilation  

$$\begin{aligned}
\mathcal{M} &= \mu b \sqrt{2g(\rho_o - \rho_i)\rho_o} \int_{0}^{h/2} x^{1/2} dx = \mu b \sqrt{2g(\rho_o - \rho_i)\rho_o} \frac{2}{3} \left(\frac{h}{2}\right)^{3/2} \\
&= \mu \frac{2}{3} b \sqrt{2g(\rho_o - \rho_i)\rho_o} \left(\frac{h^3}{8}\right) \\
\end{aligned}$$

$$\begin{aligned}
\mathcal{M} &= \mu \frac{1}{3} b \sqrt{g(\rho_o - \rho_i)\rho_o} h^3
\end{aligned}$$

| Example 3: Calculate $M_0 = ?$  | HOMEWORK                          |
|---------------------------------|-----------------------------------|
| Dimensions of window            | <i>b</i> x <i>h</i> = 1.2 x 1.2 m |
| Discharge coefficient of window | $\mu_{win} = 0.65$                |
| Atmospheric pressure            | <i>p</i> = 100 kPa                |
| Summer:                         |                                   |
| Outdoor air temperature         | <i>t<sub>o</sub></i> = 30 °C      |
| Indoor air temp.                | <i>t<sub>i</sub></i> = 24 °C      |
| Winter:                         |                                   |
| Outdoor air temperature         | $t_o = 0$ °C                      |
| Indoor air temp.                | <i>t<sub>i</sub></i> = 20 °C      |

