Environmental Engineering

4. Natural ventilation

Bachelor degree course
Vladimír Zmrhal

Principle of ventilation

Natural ventilation

is driven by pressure differences across the building envelope, caused by wind and air density differences because of temperature differences between indoor and outdoor air
$>$ the flow of air through open windows, doors, grilles and other planned building envelope penetrations
Mechanical (forced) ventilation
$>$ intentional movement of air into and out of building using mechanical force
> is driven by fans

Hybrid ventilation

Natural ventilation

The air flow is driven by pressure differences across the building envelope.
Pressure difference is caused by:
> air density differences (temperature differences between indoor and outdoor air)
$>$ wind pressure

Natural ventilation
$>$ natural ventilation by large openings (permanent)
shaft ventilation (permanent)

heat source
$>$ interupted natural ventilation (time limited)
$>$ infiltration (time limited)

depends on outdoor climatic conditions

Natural ventilation

Balanced natural ventilation
$>$ for ventilation in industry with permanent heat gain - natural ventilation by large openings
> infiltration and interrupted ventilation - residential application etc.

Natural local exhaust

$>$ shaft ventilation - industry

Natural ventilation

Stack pressure - hydrostatic pressure caused by the mass of a column air located inside or outside a building

Natural ventilation

Stack pressure difference
$p_{0}=p-\rho_{0} g y$
$p_{i}=p-\rho_{i} g y$
$\Delta p=p_{i}-p_{0}=p-\rho_{i} g y-\left(p-\rho_{0} g y\right)=g y\left(\rho_{0}-\rho_{i}\right)$
$\Delta p_{\max }=g \int_{0}^{h}\left(\rho_{o}-\rho_{i}\right) d y$
$\Delta p_{\max }=g h\left(\rho_{o}-\rho_{i}\right)$

Natural ventilation

Natural ventilation

Wind pressure
$p_{w}=C_{p} \frac{w^{2}}{2} \rho$

where C_{p} is wind surface pressure coefficient (empirical); it depends on wind direction, orientation of the building surface, ... $C_{p}=-1.4$ to 1.4

Natural ventilation by large openings

Technical rooms

(boiler room, current transformer room, junction exchange station, ...)

\rightarrow Goal $=$ design of openings area $A_{\text {ex }}, A_{\mathrm{s}}$

Natural ventilation by large openings

Mass air flow
$\dot{M}=\frac{\dot{Q}}{c\left(t_{e x}-t_{s}\right)}$
Openings area

$$
\begin{aligned}
& t_{s}=t_{0} \\
& t_{i}=\frac{t_{o}+t_{e x}}{2}
\end{aligned}
$$

$M_{e x}=M_{s}=M$
$\mu_{e x} A_{e x} \rho_{e x} W_{e x}=\mu_{s} A_{s} \rho_{s} W_{s} \leftarrow W_{s}=\sqrt{\frac{2 \Delta p_{s}}{\rho_{s}}}$
$\frac{\Delta p_{s}}{\Delta p_{e x}}=\frac{\mu_{e x}^{2}}{\mu_{s}^{2}} \frac{\rho_{e x}}{\rho_{s}} \frac{A_{e x}^{2}}{A_{s}^{2}}$

Natural ventilation by large openings
Discharge coefficient for opening μ
$\mu=\alpha \varphi$

where φ	...velocity coefficient [-]
α	...coefficient of contraction [-]
$\varphi=\frac{w}{w_{t}}$	real and theoretical velocity ratio
$\alpha=\frac{A^{\prime}}{A}$	real and theoretical area ratio
$\mu=\frac{w A^{\prime}}{W_{t} A}=\frac{V}{V_{t}}$	real and theoretical volume flow ratio

Natural ventilation by large openings

Discharge coefficient of opening μ

Opening	H/B	Shutter angle $\boldsymbol{\alpha}$				
		$\mathbf{1 5}$	$\mathbf{3 0}$	$\mathbf{4 5}$	60°	$\mathbf{9 0 ^ { \circ }}$
Supply air with louver		0,15	0,3	0,44	0,56	0,64
		0,13	0,27	0,39	0,56	0,61
		0,15	0,3	0,44	0,56	0,64
		0,13	0,27	0,39	0,56	0,61

Natural ventilation by large openings
Pressure difference (stack effect)

$$
\Delta p=h g\left(\rho_{0}-\rho_{i}\right) \quad \rho=1,293 \frac{p}{101325} \frac{273}{273+t}
$$

for pressure differences $\Delta p_{s^{\prime}} \Delta p_{\text {ex }}$ can be written
$\Delta p=\Delta p_{s}+\Delta p_{\text {ex }}$
Openings area $\left[\mathrm{m}^{2}\right]$

$$
A_{s}=\frac{M_{s}}{\mu_{s} \sqrt{2 \Delta p_{s} \rho_{s}}} \quad A_{e x}=\frac{M_{e x}}{\mu_{\mathrm{ex}} \sqrt{2 \Delta p_{e x} \rho_{e x}}}
$$

Natural ventilation of technical room

Example 1: Junction exchange station
Calculate $A_{s}=$? and $A_{\text {ex }}=$?

Internal heat gains	$Q=5 \mathrm{~kW}$	
Outdoor air temperature	$\boldsymbol{t}_{\mathrm{o}}=30^{\circ} \mathrm{C}$	(in summer)
Max. indoor air temperature	$t_{i}=35^{\circ} \mathrm{C}$	(in summer)
Atmospheric pressure	$p=100 \mathrm{kPa}$	
$h=3 \mathrm{~m}$		
$\mu_{\mathrm{s}}=\mu_{\mathrm{ex}}=0.65$	$\rho=1.293 \frac{\rho}{101325} \frac{273}{273+t}$	
$\boldsymbol{A}_{\mathrm{ex}}=A_{\mathrm{s}}$		

Natural ventilation by louvers
Large industrial halls

Natural ventilation by louvers

Pressure difference (stack effect)

$$
\Delta p=h g\left(\rho_{0}-\rho_{i}\right) \quad t_{i}=\frac{t_{o z}+t_{e x}}{2}
$$

Vertical air temperature changes \rightarrow
coefficient of heat removal efficiency $B[-]$
$B=\frac{M_{\text {rec }}}{M+M_{\text {rec }}}$

Natural ventilation by louvers

Heat balance
$M_{\text {rec }} c t_{e x}+M c t_{0}=\left(M+M_{\text {rec }}\right) c t_{o z}$
$B=\frac{t_{o z}-t_{0}}{t_{e x}-t_{0}}<1$

$$
B=0,25 \text { to } 0,4
$$

Summer: $\quad t_{0 z}-t_{0} \leq 5 \mathrm{~K} ; \quad t_{0}=25^{\circ} \mathrm{C}$
\Rightarrow Winter: $\left.\quad t_{0 z, \text { min }}=10^{\circ} \mathrm{C} ; t_{0}=0^{\circ} \mathrm{C} \quad\right\} \quad$ in Czech Rep.

Natural ventilation by louvers

Heat coefficient B

Industry application		\boldsymbol{B}
Steel mill	basic furnace	$0,30-0,35$
	electric furnace	$0,35-0,40$
	cast hall	$0,25-0,30$
Rolling mill	furnace	$0,25-0,30$
	rolling section	$0,25-0,45$
Foundry	melting-house, cupola	$0,40-0,45$
	cast into ingots	$0,37-0,40$
	cooling section	$0,65-0,70$
Glass factory	tank furnace	$0,26-0,30$
	pot furnace	$0,26-0,28$

Natural ventilation by louvers

Louvers (large openings) area calculation
$>$ see page 11 to 14

Location of the openings in summer (by the floor) and winter (smaller openings and higher location - up to 4 m).

Shaft ventilation

$>$ pressure difference due to stack effect
$\Delta p=h g\left(\rho_{0}-\rho_{i}\right)$
pressure loss (friction and local losses)
$\Delta p_{\text {loss }}=\left(\lambda \frac{l}{d}+\sum \zeta+1\right) \frac{w^{2}}{2} \rho_{i}$
$\Delta p \geq \Delta p_{\text {loss }}$
$\dot{V}=\frac{Q}{\rho c\left(t_{i}-t_{0}\right)}$

Shaft ventilation

assumption: the pressure in the shaft is approximately equal to atmospheric pressure
$p_{i}=p_{0}$
effect of the area of the supply opening

Infiltration

uncontrolled natural ventilation through the cracks, gaps around closed windows and doors, mortar joints
> air leakage through the building envelope
possitive effect of infiltration \rightarrow ventilation
$>$ negative effect of infiltration \rightarrow heat losses in winter
present \rightarrow tight windows

Infiltration

Airflow through the gaps
$V_{o}=\sum(i \cdot l) \Delta p^{n}$
where $\quad \Delta p$...pressure difference across the leakage path [Pa]
i ... flow coefficient [m³/(s.m. $\left.\mathrm{Pa}^{0,67}\right)$]
I ... lenght of the gaps [m]
n... flow exponent $n=0,67$
Ventilation heat loss
$Q_{\text {vent }}=V_{o} \rho c\left(t_{i}-t_{0}\right)$

Infiltration

Example:

Room $10 \mathrm{~m}^{2}$, height $2,6 \mathrm{~m}$, window $1,2 \times 1,5 \mathrm{~m}, t_{0}=-12^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{i}}=20^{\circ} \mathrm{C}$

	$\boldsymbol{i}\left[\mathrm{m}^{3} /\left(\mathrm{m} . \mathrm{s} \cdot \mathrm{Pa}^{0,67}\right)\right]$	$\boldsymbol{I}\left[\mathrm{h}^{-1}\right]$	$\boldsymbol{Q}_{\text {vent }}[\mathrm{W}]$
Old windows	0,00019	0,80	240
Requirements	0,00001 to 0,000087	0,02 to 0,36	6 to 109
Common windows	0,000025	0,10	31
Top windows	0,000004	0,02	5

Interupted natural ventilation

$>$ casual opening of the window
$>$ lower and higher parts of the window
mass balance
$\dot{M}_{o}=\dot{M}_{e x}=\dot{M}$
$\dot{M}_{0}=\mu \rho_{e} W_{0} S_{0}$

$$
d \dot{M}=\mu \rho_{o} \sqrt{\frac{2 \Delta p_{x}}{\rho_{o}}} b d x=\mu \sqrt{2 g x\left(\rho_{o}-\rho_{i}\right) \rho_{e}} b d x
$$

Interupted natural ventilation

$$
\begin{aligned}
& M=\mu b \sqrt{2 g\left(\rho_{o}-\rho_{i}\right) \rho_{o}} \int_{0}^{h / 2} x^{1 / 2} d x=\mu b \sqrt{2 g\left(\rho_{0}-\rho_{i}\right) \rho_{0}} \frac{2}{3}\left(\frac{h}{2}\right)^{3 / 2} \\
& =\mu \frac{2}{3} b \sqrt{2 g\left(\rho_{o}-\rho_{i}\right) \rho_{o}\left(\frac{h^{3}}{8}\right)} \cdots \\
& M=\mu \frac{1}{3} b \sqrt{g\left(\rho_{o}-\rho_{i}\right) \rho_{o} h^{3}}
\end{aligned}
$$

Example 3: Calculate $M_{0}=?$	HOMEWORK
Dimensions of window	$\boldsymbol{b} \times \boldsymbol{h}=1.2 \times 1.2 \mathrm{~m}$
Discharge coefficient of window	$\mu_{\text {vin }}=0.65$
Atmospheric pressure	$\boldsymbol{p}=100 \mathrm{kPa}$
Summer:	
Outdoor air temperature	$t_{o}=30^{\circ} \mathrm{C}$
Indoor air temp.	$t_{i}=24^{\circ} \mathrm{C}$
Winter:	$t_{o}=0^{\circ} \mathrm{C}$
Outdoor air temperature	$t_{i}=20^{\circ} \mathrm{C}$
Indoor air temp.	

